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Abstract
We investigate the functional equations associated with critical non-commuting
circle homeomorphisms. Using Epstein’s Herglotz function methods, we show
that there are analytic solutions of a class of functional equations closely
related to period-two points of the circle-map renormalization transformations
for rotation number with continued fraction [p, p, . . .], p ∈ N.

PACS number: 45.30.+s
Mathematics Subject Classification: 37E20, 37E10

1. Introduction

Since the 1980s critical circle maps have been extensively studied, not least because they
play an important role in the so-called Ruelle-Takens approach to the onset of turbulence. In
particular, the appearance of a single critical point in a circle diffeomorphism with irrational
rotation number is an idealized model of the break-up of an invariant torus in phase space on
which the flow is quasiperiodic. For a review of this theory we refer the reader to [R].

Following the pioneering work of Feigenbaum with regard to period doubling [F1, F2],
universal behaviour for critical circle maps [FKS] was explained by a renormalization analysis
[ORSS, FKS], which was based on the existence and hyperbolicity of fixed points of a
renormalization transformation. The universal scaling behaviour is governed by a so-called
trivial fixed point in the case of circle diffeomorphisms and by a non-trivial critical fixed point
for critical circle maps. For the case of golden-mean rotation number, the existence of the non-
trivial fixed point was established first analytically for degree close to 1 [JR], second for cubic
maps by computer-assisted means [M] and finally analytically for all degrees [EE]. Complex
analytic methods have also been used by Yampolsky to establish strong convergence results
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for odd integer degree [Y1, Y2]. Recently, Yampolsky has constructed a renormalization
horseshoe for circle maps [Y3].

In [MO1], the theory for golden-mean circle diffeomorphisms was extended to the case of
‘almost-C1 maps’. The scaling for such maps was found to be governed by period-two points
of the golden-mean circle renormalization transformation and to depend on a ‘modulus’ which
determines the universality class of the circle map. Further, more general results in this area
have been obtained by Khanin and coworkers [KV, KK].

In this paper we begin the extension of the results in [MO1] to the case of critical circle
maps, and for the case of rotation number ρ with continued fraction expansion [p, p, p, . . .]
for p � 1 an integer.

Recall that the dynamics of a circle homeomorphism h : T
1 → T

1 are determined by the
arithmetic properties of the rotation number ρ = ρ(h) = limn→∞(f n(x)−x)/n mod 1, where
f : R → R is a lift of h to R. In particular ρ is rational iff h has a periodic orbit and (for h
sufficiently smooth) ρ is irrational iff h has a dense orbit. The scaling properties of the regions
in function space (the Arnol’d tongues) are governed by the renormalization transformation
acting on pairs of maps (ξ, η) that glue together to make a circle homeomorphism. Specifically,
let 1/(p + 1) < ρ(h) < 1/p for p � 1 a positive integer, and let ξ and η be increasing maps
defined on intervals containing [η(0), 0] and [0, ξ(0)] respectively, and such that

(1) η(ξ(0)) = ξ(η(0)),
(2) 0 < ξ(0) < 1,
(3) ξp(η(0)) > 0,
(4) ξp−1(η(0)) < 0.

Then defining h by

h(x) =
{
ξ(x), η(0) � x � 0
η(x), 0 � x � ξ(0)

gives a homeomorphism h on the circle obtained by identifying the points ξ(0) and η(0). The
rotation number ρ(ξ, η) of the pair (ξ, η) is then ρ(h).

Using juxtaposition to denote function composition and scaling, the renormalization
transformation Tp on function pairs (ξ, η) is defined by

Tp(ξ, η) = (β−1ξp−1ηβ, β−1ξp−1ηξβ), β < 0

and satisfies

ρ(Tp(ξ, η)) = 1

ρ(ξ, η)
− p.

(See [ORSS] for further details.)
Let r � 1 be an odd integer. (In our subsequent work we shall take r � 1 real, but for

simplicity we consider only odd integers here.) Our work in this paper concerns the question
of the existence of a family of period-two points of the transformation Tp.

The origin of the family may be readily understood in terms of the renormalization theory
of commuting circle-map pairs, i.e, pairs satisfying ξη = ηξ (at least on a neighbourhood of
0). Restricted to the space of commuting pairs (ξ, η), the transformation T is hyperbolic at
each fixed point of degree r � 1, each with a single essential eigenvalue δ > 1. However,
once commutativity is no longer imposed, hyperbolicity is lost and, as observed in [ORSS], an
eigenvalue −1 appears. This eigenvalue indicates the existence of a line of period-two points
of T, corresponding to non-commuting circle-map pairs.

Indeed, a heuristic analysis of the spectrum of the derivative of the renormalization
operator Tp at the degree-r fixed point (the existence of which was proved by Eckmann and
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Epstein [EE]) shows that there is an eigenvalue −1 corresponding to infinitesimal perturbations
of the fixed point that satisfy (ξη−ηξ)(0) = 0, (ξη−ηξ)′(0) = 0, . . . , (ξη−ηξ)(r−1)(0) = 0,
but (ξη − ηξ)(r)(0) �= 0, so that the commuting condition is satisfied up to (r − 1) th order
but not up to rth order. (We refer the reader to [ORSS] for details of these calculations.) This
result suggests strongly the existence of a one-parameter family of period-two points through
the degree-r fixed point corresponding to breaking the commuting symmetry ξη = ηξ on a
neighbourhood of 0, so that, for all p � 1, and for all r > 1, there exist pairs (ξ, η), (ξ̃ , η̃)

such that Tp(ξ, η) = (ξ̃ , η̃) and Tp(ξ̃ , η̃) = (ξ, η) with critical points of degree r at 0.
We now define the modulus s = s(ξ, η) by

s = (ηξ)(r)(0)

(ξη)(r)(0)
. (1.1)

A straightforward calculation shows that Tp inverts the modulus s, i.e., s(Tp(ξ, η)) =
s(ξ, η)−1. This means that a fixed-point pair of Tp necessarily has s(ξ, η) = 1. For s(ξ, η) �= 1,
we will have s(T 2

p (ξ, η)) = s(ξ, η), which is certainly consistent with a period-two point
of Tp.

In [MO1], Mestel and Osbaldestin studied non-commuting circle-map pairs, in the context
of understanding the scaling behaviour of implicit complex maps on the boundary of a golden-
mean Siegel disc. It was observed that a line of period-two points did indeed exist through
the trivial fixed point (ξL, ηL) (the case r = 1 here). The period-two points were given by
fractional-linear maps and were parametrized by an invariant ‘modulus’ µ given for a pair
(ξ, η) by

µ = (ηξ)′(0)

(ξη)′(0)
. (1.2)

Similar results have been obtained by Khanin and Vul [KV]. Formula (1.2) has a natural
generalization to degree-r maps given by (1.1) above.

Thus, our aim is working towards the proof of the following conjecture, which follows
on from previous work of Khanin and Vul [KV] and of Mestel and Osbaldestin [MO1] on
non-commuting almost-C1 maps, and of the numerical observations in [Z].

Let us now extend r > 1 to real values as indicated above. We consider pairs (ξ, η)

satisfying (1)–(4) above and which may be written as functions of x(r) = x|x|r−1. The
renormalization transformation Tp given above preserves the space of pairs of this form.

Writing ξ(x) = E(x(r)), η(x) = F(x(r)) where E and F are C1 at 0, the modulus s may
be written in terms of E and F as follows:

s(E, F ) = F ′(E(0)(r))|E(0)|r−1E′(0)

E′(F (0)(r))|F(0)|r−1F ′(0)
. (1.3)

This formula extends to all real values of r > 1.

Conjecture

(1) (Existence) For all r > 1 and all µ > 0 there exists a solution pair (ξ, η) to the equation
T 2

p (ξ, η) = (ξ, η), with ξ(x) = E(x(r)), η(x) = F(x(r)), with E′(0), F ′(0) �= 0 and with
s(ξ, η) = s(E, F ) = µ. Furthermore E and F are analytic on a neighbourhood of 0.

(2) (Hyperbolicity) Restricted to the space of pairs (ξ, η) with r fixed and s(ξ, η) = µ,
the period-two orbit is hyperbolic with a single unstable direction, i.e., the spectrum of
dT 2

p (ξ, η) consists of a single eigenvalue �, with |�| > 1, and all other eigenvalues lie
strictly within the unit circle.
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The conjecture is in line with the results for commuting circle maps [EE, L], and suggests that
the universal scaling of non-commuting circle maps is governed by a non-trivial period-two
point of the relevant renormalization transformation and that the universality class of critical
circle maps is dependent on two parameters, namely, the degree r > 1 of the critical point and,
a second, asymmetry parameter, or ‘modulus’ given for r an odd integer by equation (1.1).

In this paper we make considerable progress in the first conjecture. A period-two point
(ξ, η) with image (ξ̃ , η̃) under Tp satisfies the equations

ξ̃ = β−1ξp−1ηβ, η̃ = β−1ξp−1ηξβ (1.4)

ξ = β̃−1ξ̃ p−1η̃β̃, η = β̃−1ξ̃ p−1η̃ξ̃ β̃ (1.5)

which, on elimination of η, and η̃ gives

ξ = β̃−1ξ̃ pβ−1ξββ̃, ξ̃ = β−1ξpβ̃
−1

ξ̃ββ̃. (1.6)

To prove the first conjecture it would be sufficient to solve (1.6), since a solution of (1.6)
readily provides a solution of (1.4). Instead we obtain a solution of the following equations:

ξ = β̃−1ξ̃ pβ−1ξ(ββ̃)ρ/r , ξ = β−1ξpβ̃
−1

ξ̃ (ββ̃)ρ̃/r , (1.7)

where ρ, ρ̃ > 0 satisfy max(ρ, ρ̃) = r , but are otherwise undetermined. Of course, this
includes (1.6) as a special case. Despite the sophistication of the mathematical techniques
involved, further work is needed to establish the precise equations (1.6) and parametrization
required for the circle-map renormalization. Nevertheless we believe that we have made a
significant step forward in this theory.

In the spirit of the work of Mestel and Osbaldestin on asymmetric period-doubling
renormalization [MO2], we use Herglotz function methods. We recast the renormalization
equations in terms of Herglotz functions and, using techniques of Epstein [E2], we show that
there is a one-parameter family of solutions to a class of associated functional equations.

The remainder of this paper is organized as follows. In section 2, we reformulate the
circle-map renormalization fixed-point problem so that Herglotz-function methods may be
utilized. A statement of our results is given in section 3. Following preliminary material on
Herglotz functions in section 4, we prove our results in section 5. Finally, in section 6, we
make some concluding remarks.

2. Reformulation of a circle-map problem

We now reformulate briefly the functional equations for period-two points of the operator Tp

so that the Herglotz-function method may be employed.
A period-two point of the renormalization transformation Tp, for integer p � 1 satisfies

the following equations:

(ξ̃ , η̃) = Tp(ξ, η) = (β−1ξp−1ηβ, β−1ξp−1ηξβ), β < 0 (2.1)

(ξ, η) = Tp(ξ̃ , η̃) = (β̃−1ξ̃ p−1η̃β̃, β̃−1ξ̃ p−1η̃ξ̃ β̃), β̃ < 0 (2.2)

with 0 < ββ̃ < 1 and with normalizations ξ(0) = ξ̃ (0) = 1. These equations may be
readily reformulated so that the Herglotz-function method may be used. Indeed, we may first
eliminate the functions η, η̃ to obtain

ξ = β̃−1ξ̃ pβ−1ξββ̃, ξ̃ = β−1ξpβ̃−1ξ̃ββ̃, (2.3)
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and then, writing ξ(x) = E(x|x|r−1), ξ̃ (x) = Ẽ(x|x|r−1), U(x) = −E−1(x), Ũ (x) =
−Ẽ−1(x), λ = −β > 0, λ̃ = −β̃ > 0, we obtain

U(x) = (λλ̃)−rU(φ̃(x)), Ũ (x) = (λλ̃)−r Ũ (φ(x)), (2.4)

where

φ(x) = λ̃V̂ p(λx), φ̃(x) = λ ˜̂V
p

(λ̃x), (2.5)

and V̂ (x) = U(−x)1/r , ˜̂V (x) = Ũ (−x)1/r . We note that we have the normalizations
U(1) = Ũ (1) = 0. Further normalizing by writing ψ(x) = U(x)/U(0), ψ̃(x) = Ũ (x)/Ũ(0),
we obtain the functional equations

ψ(x) = (λλ̃)−rψ(φ̃(x)), ψ̃(x) = (λλ̃)−r ψ̃(φ(x)), (2.6)

where ψ(0) = ψ̃(0) = 1 and ψ(1) = ψ̃(1) = 0 and where

φ(x) = λ̃(z1λ̃
−1v)p(λx), φ̃(x) = λ(z̃1λ

−1ṽ)p(λ̃x), (2.7)

and v(x) = ψ(−x)1/r , ṽ(x) = ψ̃(−x)1/r . These are equations of the general form (2.6), (2.7)
that we are concerned with in this paper.

3. Statement of the main results

We now give the main result that we prove in our paper.

Theorem 1. Let r > 1, γ > 0 be fixed real numbers, and p a positive integer. Then,
there exist real numbers λ > 0, λ̃ > 0, ρ > 0, ρ̃ > 0, a ∈ (0, 1), ã ∈ (0, 1), with
λλ̃ ∈ (0, 1), λ̃/λ = γ, max (ρ, ρ̃) = r , and anti-Herglotz functions ψ, ψ̃ , analytic on
(−λ̃−1, ã−1), (−λ−1, a−1) respectively, such that

ψ(z) = 1

(λλ̃)ρ̃
ψ(φ̃(z)), ψ(0) = 1, ψ(1) = 0, (3.1)

ψ̃(z) = 1

(λλ̃)ρ
ψ̃(φ(z)), ψ̃(0) = 1, ψ̃(1) = 0, (3.2)

where

φ(z) = λ̃(z1λ̃
−1v)p(λz), (3.3)

φ̃(z) = λ(z̃1λ
−1ṽ)p(λ̃z), (3.4)

where

v(z) = ψ(−z)
1
r , (3.5)

ṽ(z) = ψ̃(−z)
1
r , (3.6)

and the real numbers z1 ∈ (0, 1), z̃1 ∈ (0, 1) are chosen so that φ(1) = 1, φ̃(1) = 1.

Comparing equations (3.1), (3.2) with (2.6), we see that they correspond precisely when
ρ = ρ̃ = r . This is equivalent to the condition that φ′(1) = φ̃′(1). Furthermore, the closer is
the agreement between φ′(1) and φ̃′(1), the closer is the agreement between ρ and ρ̃. Thus
equation (2.6) involves a further symmetry that it is not straightforward to impose on the
solution. This problem appears to be technical, rather than fundamental. A further difference
is that (again for technical reasons) we have chosen to use the ratio γ = λ̃/λ to parametrize
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the family of solutions, rather than µ. Nevertheless, in view of the difficulty of the nonlinear
functional equations, our result constitutes a significant progress towards establishing the
existence of solutions of (2.6).

In the remainder of this paper, we give the proof of the results outlined above. The
methods follow those of Epstein in [E2], although there are many differences in our approach.
It turns out that the case p = 1 is simpler and serves as an introduction to the more complicated
case p � 2, which requires a more careful analysis.

We now present some important background results on Herglotz functions which we shall
use extensively in the subsequent sections.

4. Herglotz function preliminaries and notation

We denote C+ the upper-half complex plane {z : Im z > 0}, C− = −C+, and C+, C− the
closures of C+, C−, respectively. If I ⊆ R is an open interval, we denote �(I) the domain
�(I) = C+ ∪ C− ∪ I .

A function F is a Herglotz function if it is analytic in C+ ∪ C−, F (C+) ⊂ C+, and
F(C−) ⊂ C−. Similarly, a function ψ is an anti-Herglotz function if it is analytic in
C+ ∪ C−, ψ(C+) ⊂ C−, and ψ(C−) ⊂ C+.

If a non-constant Herglotz function F is also analytic on an interval I ⊆ R, then F is
strictly increasing and has a positive Schwarzian derivative S(F ) = (F ′′/F ′)′ − (F ′′/F ′)2/2
on I [D]. One consequence of this is that F cannot have a local maximum in its first derivative.
Similarly, if a non-constant anti-Herglotz function ψ is also analytic on an interval I ⊆ R,
then ψ is strictly decreasing and has a positive Schwarzian derivative S(ψ) on I. On any
interval I on which a Herglotz or anti-Herglotz function is analytic, the right- and left-hand
limits exist respectively at the left- and right-hand endpoints of I, although they may be ±∞,
and therefore the function can be continuously extended to Ī .

For any two real numbers A,B, with A < 0 < 1 < B, we denote H(A,B),AH(A,B)

the spaces of Herglotz and anti-Herglotz functions respectively which are also analytic on
the interval (A,B) on the real axis. We equip H(A,B) and AH(A,B) with the topology of
uniform convergence on compact subsets of �(A,B).

Any Herglotz function F admits the integral representation [H, AG, D]

F(z) = c1 + c2z +
∫

R

{
1

t − z
− t

t2 + 1

}
dρ(t), (4.1)

where c1, c2 are real constants (c2 � 0), and the function ρ(t) is non-decreasing, right
continuous, defined up to an additive constant, and satisfies the convergence condition∫

R

1

1 + t2
dρ(t) < +∞. (4.2)

For given F, the constants c1, c2 are determined by c1 = ReF(i), c2 =
lims→+∞ 1

s
ImF(is), (s ∈ R), and ρ gives rise to a measure µ through the relation

ρ(b) − ρ(a) = µ((a, b]) for finite intervals (a, b]. We refer to µ as the Herglotz measure
associated with F.

The boundary value F+(x) of F at a point x on the real axis is defined by F+(x) =
limε→0+ F(x + iε)(x ∈ R, ε ∈ R). F+(x) exists Lebesgue-almost everywhere either as a
real number or as a complex number with a strictly positive imaginary part. The absolutely
continuous part µa.c. of µ is concentrated on the set of points {x ∈ R : ImF+(x) > 0}, and the
density function of µa.c. is given by 1

π
ImF+(x). See [P] for an analysis of the support of the

absolutely continuous and singular parts of µ. Hence the measure associated with the Herglotz
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function log F(z) is purely absolutely continuous, and can be written as σ(t) dt , where the
density function σ(t) is defined almost everywhere and satisfies 0 � σ(t) � 1.

For any two real numbers m1 > 0,m2 > 0 we denote E(m1,m2) the space of anti-Herglotz
functions ψ analytic in the domain �(−1/m1, 1/m2), and such that ψ(0) = 1, ψ(1) = 0.
Then, such a function has the representation

log ψ(z) =
∫

R\(−1/m1,1)

{
1

t
− 1

t − z

}
σ(t) dt, ∀z ∈ �(−1/m1, 1), (4.3)

where 0 � σ(t) � 1, σ (t) = 0 for all t ∈ [−1/m1, 1], and σ(t) = 1 for all t ∈ [1, 1/m2]. It
follows from the above representation that ψ satisfies the following inequalities [E1, E2]:

ψ(z)(1 − m2z)

1 − z
� 1 � ψ(z)(1 + m1z)

1 − z
, ∀ z ∈ (0, 1/m2)\{1}, (4.4)

reversed for z ∈ (−1/m1, 0),

1 − m2

(1 − z)(1 − m2z)
� −ψ ′(z)

ψ(z)
� 1 + m1

(1 − z)(1 + m1z)
, ∀ z ∈ (−1/m1, 1/m2)\{1}.

(4.5)

Moreover, if ψ(−1/m1) � M , for some (positive) constant M, then

−ψ ′(z)
ψ(z)

� log M

(−4z)(1 + m1z)
. (4.6)

We shall also need the following lemma which is proved in [E2].

Lemma 1

(i) Let A < a < b < B be real numbers, and F ∈ H(A,B). Then, for each z ∈ (a, b),

F(z) � (B − b)(z − a)F (b) + (B − a)(b − z)F (a)

(b − a)(B − z)
. (4.7)

(ii) Let A,B,A′, B ′ be strictly positive real numbers. If F is an analytic map of �(−A,B)

into �(−A′, B ′) with F(0) = 0, then

|F ′(0)| � A′B ′(A + B)

AB(A′ + B ′)
. (4.8)

5. Proof of the principal theorem

5.1. The case p = 1

In this section p = 1, and r > 1, γ > 0 are fixed real numbers. The real numbers �−,�+,

with 0 < �− < �+ < 1, are also fixed, but will be chosen later. Let b =
√

�+
γ

, b̃ = √
γ�+.

We note that bb̃ = �+. For any two strictly positive real numbers s, t , let a function h be
defined by

hs,t (z) = z(s + 1)

z(s − t) + 1 + t
, (5.1)

and note that hs,t (0) = 0, hs,t (1) = 1, and hs,t (−1/s) = −1/t .
We denote Q1(r, γ,�+) the space of all pairs of functions (�, �̃) with the following

properties:

(q1) � ∈ H(−b−1,�−1
+ ), �̃ ∈ H(−b̃−1,�−1

+ ),
(q2) �(−b−1,�−1

+ ) ⊆ (0,�−1
+ ), �̃(−b̃−1,�−1

+ ) ⊆ (0,�−1
+ ),
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(q3) �(1) = 1, �̃(1) = 1,�′(1) � �r
+, �̃

′(1) � �r
+,�

′(1)�̃′(1) � �2r
− .

We shall define a continuous operator B(r, γ,�+) by describing its action on an arbitrary
(�0, �̃0) ∈ Q1(r, γ,�+). We first define functions φ0, φ̃0 and their linearizers ψ, ψ̃ ,
respectively. Then, we proceed to define the associated functions φ, φ̃, and obtain bounds for
φ′(1), φ̃′(1).

5.1.1. The functions φ, φ̃. Given (�0, �̃0) ∈ Q1(r, γ,�+), we denote �0 = �′
0(1)

1
r , �̃0 =

�̃′
0(1)

1
r . By (q3), �0 � �+, �̃0 � �+ and �0�̃0 � �2

−. We set � = min{�0, �̃0}, λ =√
�
γ
, λ̃ = √

γ�, ρ = r log �0

log �
� r and ρ̃ = r log �̃0

log �
� r . Note that � = λλ̃, 0 < λ � b, 0 <

λ̃ � b̃, hence � � �+. We define functions φ0, φ̃0 by

φ0 = hb,λ ◦ �0 ◦ h−1
b,λ, φ̃0 = hb̃,λ̃ ◦ �̃0 ◦ h−1

b̃,λ̃
. (5.2)

If λ = b, hb,λ is the identity. Otherwise, since λ < b, its pole is below −b−1 and hb,λ maps
�(−b−1,�−1

+ ) onto �(−λ−1, a1(λ)−1) where

a1(λ)−1 = hb,λ(�
−1
+ ),

λλ̃ � �+ � a1(λ) = b + �+ − λ(1 − �+)

1 + b
< a1(0) = b + �+

1 + b
.

(5.3)

Similarly, if λ̃ = b̃, hb̃,λ̃ is the identity. Otherwise, its pole is below −b̃−1 and hb̃,λ̃ maps
�

(−b̃−1,�−1
+

)
onto �(−λ̃−1, ã1(λ̃)−1) where

ã1(λ̃)−1 = hb̃,λ̃

(
�−1

+

)
,

λλ̃ � �+ � ã1(λ̃) = b̃ + �+ − λ̃(1 − �+)

1 + b̃
< ã1(0) = b̃ + �+

1 + b̃
.

(5.4)

The functions φ0, φ̃0 possess the following properties:

(q′1) φ0 ∈ H(−λ−1, a1(λ)−1), φ̃0 ∈ H(−λ̃−1, ã1(λ̃)−1),
(q′2) φ0(−λ−1, a1(λ)−1) ⊆ (0, a1(λ)−1), φ̃0(−λ̃−1, ã1(λ̃)−1) ⊆ (0, ã1(λ̃)−1),
(q′3) φ0(1) = 1, φ̃0(1) = 1, φ′

0(1) = (λλ̃)ρ, φ̃′
0(1) = (λλ̃)ρ̃ .

We denote ψ, ψ̃ the linearizers of φ0, φ̃0 respectively, normalized by the condition
ψ(0) = ψ̃(0) = 1. Thus, ψ ∈ AH(−λ̃−1, ã1(λ̃)−1), ψ̃ ∈ AH(−λ−1, a1(λ)−1), and they
satisfy the following equations:

ψ(z) = 1

(λλ̃)ρ̃
ψ(φ̃0(z)), z ∈ �(−λ̃−1, ã1(λ̃)−1), ψ(0) = 1, ψ(1) = 0, (5.5)

ψ̃(z) = 1

(λλ̃)ρ
ψ̃(φ0(z)), z ∈ �(−λ−1, a1(λ)−1), ψ̃(0) = 1, ψ̃(1) = 0. (5.6)

The existence and properties of ψ, ψ̃ are well known from the literature. The function ψ is
given by

ψ(z) = h(z)

h(0)
, h(z) = lim

n→∞
1

(λλ̃)nρ̃
(φ̃n

0(z) − 1),

and the limit converges uniformly on compact subsets of �(−λ̃−1, ã1(λ̃)−1), which is a basin
of attraction of 1 for φ̃0. The function ψ̃ is defined in a similar way. We note that ψ, ψ̃

depend continuously on φ0, φ̃0. On [−λ̃−1, ã1(λ̃)−1), ψ is strictly decreasing and, because
0 � φ̃0(−λ̃−1) < 1,

ψ(−λ̃−1) = 1

(λλ̃)ρ̃
ψ(φ̃0(−λ̃−1)) � 1

(λλ̃)ρ̃
.
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Similarly, we have

ψ̃(−λ−1) = 1

(λλ̃)ρ
ψ̃(φ0(−λ−1)) � 1

(λλ̃)ρ
.

We now define new Herglotz functions φ, φ̃ by

φ(z) = ψ(−λz)
1
r

ψ(−λ)
1
r

, z ∈ �(−λ−1, (λλ̃)−1), (5.7)

φ̃(z) = ψ̃(−λ̃z)
1
r

ψ̃(−λ̃)
1
r

, z ∈ �(−λ̃−1, (λλ̃)−1). (5.8)

We have

φ(−λ−1) = 0, φ(1) = 1, φ̃(−λ̃−1) = 0, φ̃(1) = 1,

φ((λλ̃)−1) = ψ(−λ̃−1)
1
r

ψ(−λ)
1
r

< (λλ̃)−
ρ̃

r � (λλ̃)−1,

φ̃((λλ̃)−1) = ψ̃(−λ−1)
1
r

ψ̃(−λ̃)
1
r

< (λλ̃)−
ρ

r � (λλ̃)−1.

Thus, the domain �(−λ−1, (λλ̃)−1) is a basin of attraction of the fixed point 1 of φ,
and the domain �(−λ̃−1, (λλ̃)−1) is a basin of attraction of the fixed point 1 of φ̃.
The domains �(−λ−1, (λλ̃)−1),�(−λ̃−1, (λλ̃)−1) contain the domains �(−λ−1, a1(λ)−1),

�(−λ̃−1, ã1(λ̃)−1) respectively, since a1(λ) � λλ̃, ã1(λ̃) � λλ̃.
The fact that φ, φ̃ are Herglotz functions with φ(1) = 1, φ̃(1) = 1, φ((λλ̃)−1) <

(λλ̃)−1, φ̃((λλ̃)−1) < (λλ̃)−1 implies that φ(a1(λ)−1) < a1(λ)−1 and φ̃(ã1(λ̃)−1) < ã1(λ̃)−1,
so that φ maps the domain �(−λ−1, a1(λ)−1) into itself, and similarly φ̃ maps the domain
�(−λ̃−1, ã1(λ̃)−1) into itself.

5.1.2. Upper bounds for φ′(1), φ̃′(1). We now obtain upper bounds for φ′(1) and φ̃′(1).
From Schwarz’s lemma we have

φ′(1) � A′B ′(A + B)

AB(A′ + B ′)
(5.9)

with

A = 1 +
1

λ
, B = 1

λλ̃
− 1, A′ = 1, B ′ = 1

λλ̃
− 1.

This gives

φ′(1) � λ(1 + λ̃)

1 + λ
�

√
�+
γ

+ λλ̃√
�+
γ

+ 1
. (5.10)

Similarly, we obtain

φ̃′(1) � λ̃(1 + λ)

1 + λ̃
�

√
γ�+ + λλ̃√
γ�+ + 1

. (5.11)

Now, we have

φ′(1) = −λψ ′(−λ)

rψ(−λ)
,



11886 Y T Christodoulides and B D Mestel

and from inequality (4.6), with M = (λλ̃)−r , m1 = λ̃, we obtain

φ′(1) � log(λλ̃)−1

4(1 − λλ̃)
. (5.12)

Similarly,

φ̃′(1) � log(λλ̃)−1

4(1 − λλ̃)
. (5.13)

Combining inequalities (5.10) and (5.12) we have

φ′(1) � min




√
1
γ

+ λλ̃√
1
γ

+ 1
,

log(λλ̃)−1

4(1 − λλ̃)


 � max

0�x�1
min

{√
1
γ

+ x√
1
γ

+ 1
,

log x−1

4(1 − x)

}
= k < 1.

(5.14)

From inequalities (5.11) and (5.13) we also have

φ̃′(1) � max
0�x�1

min

{√
γ + x√
γ + 1

,
log x−1

4(1 − x)

}
= k̃ < 1. (5.15)

We therefore choose �+ < 1 such that k1 = max(k, k̃) � �r
+ < 1.

5.1.3. Lower bounds for φ′(1), φ̃′(1). We now consider the lower bounds. The lower bound
in (4.5), with m2 = ã1(λ̃) < ã1(0) = b̃+�+

1+b̃
(see (5.4)), gives

φ′(1) � λ(1 − ã1(λ̃))

r(1 + λ)(1 + λã1(λ̃))
� λ(1 − �+)

r(1 + b)(2 + b + b̃)
= λK1(r, γ,�+). (5.16)

Similarly, we have φ̃′(1) � λ̃K̃1, where K̃1 > 0 depends on r, γ,�+. Hence

φ′(1)φ̃′(1) � λλ̃K1K̃1 = �K1K̃1 � �2
−K1K̃1, (5.17)

since � = min{�0, �̃0} � �0�̃0 � �2
−. We now choose �− such that

�− � (K1K̃1)
1

2(r−1) , (5.18)

and we then have φ′(1)φ̃′(1) � �2r
− .

We now define the action of the operator B(r, γ,�+) on (�0, �̃0) by

B(�0, �̃0) = (�, �̃), (5.19)

where

� = h−1
b,λ ◦ φ ◦ hb,λ, �̃ = h−1

b̃,λ̃
◦ φ̃ ◦ hb̃,λ̃. (5.20)

Our estimates show that if �+ � k
1
r

1 and �− satisfies (5.18), then

B(r, γ,�+)Q1(r, γ,�+) ⊂ Q1(r, γ,�+).

The continuous map B(r, γ,�+) maps the compact convex non-empty set Q1(r, γ,�+)

into itself. Therefore it has a fixed point there by the Schauder–Tikhonov theorem. If
(�0, �̃0) = (�, �̃) is such a fixed point, the functions φ0, φ̃0 and φ, φ̃ constructed as above
coincide respectively, and theorem 1 has been proved in this case with a = ã = λλ̃, z1 =
ψ(−λ)−

1
r , z̃1 = ψ̃(−λ̃)−

1
r .
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5.2. The case p � 2

In this section r > 1 and γ > 0 are fixed real numbers, and p � 2 is a fixed integer. The real
numbers �− and �+, with 0 < �− < �+ < 1, are also fixed, but will be chosen later. Let

b =
√

�+
γ

, b̃ = √
γ�+, and note that bb̃ = �+.

We define the functions a : [0, 1] → [0, 1], ã : [0, 1] → [0, 1] by

a(t) = min

{
(1 +

√
γ )

√
t

√
γ (1 − √

t)
,

1 +
√

t

2

}
=




(1 +
√

γ )
√

t
√

γ (1 − √
t)

, 0 � t � �∗,

1 +
√

t

2
, �∗ � t � 1,

(5.21)

ã(t) = min

{
(1 +

√
γ )

√
t

1 − √
t

,
1 +

√
t

2

}
=




(1 +
√

γ )
√

t

1 − √
t

, 0 � t � �̃∗,

1 +
√

t

2
, �̃∗ � t � 1.

(5.22)

The functions a, ã are continuous and strictly increasing in [0, 1]. The numbers �∗, �̃∗, with

�− < �∗ < �+,�− < �̃∗ < �+, satisfy (1+
√

γ )
√

�∗√
γ (1−√

�∗)
= 1+

√
�∗

2 ,
(1+

√
γ )

√
�̃∗

1−
√

�̃∗
= 1+

√
�̃∗

2 . Let

�� = min{�∗, �̃∗}.
We denote Q2(r, γ,�+) the space of all pairs of functions (�, �̃) with the following

properties:

(q̃1) � ∈ H(−b−1, a(�+)
−1), a(�+) = 1

2 (1 +
√

�+), �̃ ∈ H(−b̃−1, ã(�+)
−1), ã(�+) =

a(�+),

(q̃2) �(−b−1, a(�+)
−1) ⊆ (0, a(�+)

−1), �̃(−b̃−1, ã(�+)
−1) ⊆ (0, ã(�+)

−1),
(q̃3) �(1) = 1, �̃(1) = 1,�′(1) � �r

+, �̃
′(1) � �r

+,�
′(1)�̃′(1) � �2r

− .

We shall define a continuous operator B(r, p, γ,�+) by describing its action on an
arbitrary (�0, �̃0) ∈ Q2(r, γ,�+). As in the previous section, we first define functions
φ0, φ̃0, and their linearizers ψ, ψ̃ , respectively. Then, we proceed to define the associated
functions φ, φ̃, and obtain bounds for φ′(1), φ̃′(1).

5.2.1. The functions φ, φ̃. Given (�0, �̃0) ∈ Q2(r, γ,�+), we denote �0 = �′
0(1)

1
r , �̃0 =

�̃′
0(1)

1
r . Then �0 � �+, �̃0 � �+ and �0�̃0 � �2

−. We set � = min{�0, �̃0}, λ =√
�
γ
, λ̃ = √

γ�, ρ = r log �0

log �
� r and ρ̃ = r log �̃0

log �
� r . Note that 0 < λ � b, 0 < λ̃ � b̃. We

define functions φ0, φ̃0 by

φ0 = hb,λ ◦ �0 ◦ h−1
b,λ, φ̃0 = hb̃,λ̃ ◦ �̃0 ◦ h−1

b̃,λ̃
, (5.23)

where the function h was defined in (5.1). Thus, hb,λ maps �(−b−1, a(�+)
−1) onto

�(−λ−1, a2(λ)−1) where

a2(λ)−1 = hb,λ(a(�+)
−1),

a(�) � a(�+) � a2(λ) = 2b + 1 +
√

�+ − λ(1 − √
�+)

2(1 + b)
< a2(0) = 2b + 1 +

√
�+

2(1 + b)
< 1.

(5.24)
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Similarly, hb̃,λ̃ maps �(−b̃−1, ã(�+)
−1) onto �(−λ̃−1, ã2(λ̃)−1), where

ã2(λ̃)−1 = hb̃,λ̃(ã(�+)
−1),

ã(�) � ã(�+) � ã2(λ̃) = 2b̃ + 1 +
√

�+ − λ̃(1 − √
�+)

2(1 + b̃)
< ã2(0) = 2b̃ + 1 +

√
�+

2(1 + b̃)
< 1.

(5.25)

The functions φ0, φ̃0 possess the same properties as in the previous section, but with
a1(λ), ã1(λ̃) now replaced by a2(λ), ã2(λ̃), respectively.

As before, we denote ψ, ψ̃ the linearizers of φ0, φ̃0 respectively, normalized by the
condition ψ(0) = ψ̃(0) = 1. Then,

ψ(z) = 1

(λλ̃)ρ̃
ψ(φ̃0(z)), z ∈ �(−λ̃−1, ã2(λ̃)−1), ψ(0) = 1, ψ(1) = 0, (5.26)

ψ̃(z) = 1

(λλ̃)ρ
ψ̃(φ0(z)), z ∈ �(−λ−1, a2(λ)−1), ψ̃(0) = 1, ψ̃(1) = 0. (5.27)

ψ and ψ̃ are anti-Herglotz functions, analytic in the domains �(−λ̃−1, ã2(λ̃)−1),

�(−λ−1, a2(λ)−1) respectively, and they satisfy the following inequalities:

ψ(−λ̃−1) = 1

(λλ̃)ρ̃
ψ(φ̃0(−λ̃−1)) � 1

(λλ̃)ρ̃
,

ψ̃(−λ−1) = 1

(λλ̃)ρ
ψ̃(φ0(−λ−1)) � 1

(λλ̃)ρ
.

We define Herglotz functions v, ṽ by

v(z) = ψ(−z)
1
r , z ∈ �(−1, λ̃−1), (5.28)

ṽ(z) = ψ̃(−z)
1
r , z ∈ �(−1, λ−1). (5.29)

They satisfy

v(−1) = 0, v(0) = 1, ṽ(−1) = 0, ṽ(0) = 1,

v(λ̃−1) � (λλ̃)−
ρ̃

r � (λλ̃)−1, ṽ(λ−1) � (λλ̃)−
ρ

r � (λλ̃)−1.

We now show that there exist unique z1 ∈ (0, 1), z̃1 ∈ (0, 1) such that

(z1λ̃
−1v)p(λ) = λ̃−1, (5.30)

(z̃1λ
−1ṽ)p(λ̃) = λ−1. (5.31)

Following the arguments in [E2] closely, we prove (5.30); (5.31) follows in a similar way. For
real s � 0 let x0(s) = λ, x1(s) = sλ̃−1v(λ). The function s → x1(s) is strictly increasing
on R+ and takes the values λ at s∗ = λλ̃/v(λ) and λ̃−1 at s1 = 1/v(λ). Note that, since
v(λ) > v(0) = 1, s∗ < λλ̃ and s1 < 1. Also, s∗ � (λλ̃)/v(λ̃−1) � (λλ̃)/(λλ̃)−1 = (λλ̃)2. By
induction we can construct a strictly decreasing infinite sequence s1 > · · · > sj > · · · > s∗
such that, for j � 2, xj (s) = (sλ̃−1v)j (λ) is continuous and strictly increasing on
[s∗, sj−1], x0(s) < · · · < xj (s) in (s∗, sj−1], xj (s∗) = λ, and xj (sj ) = λ̃−1. Indeed,
xj+1(s) = sλ̃−1v(xj (s)) is defined, continuous and strictly increasing on [s∗, sj ], and
xj+1(s) > xj (s) for all s ∈ (s∗, sj ]. Since xj+1(sj ) > xj (sj ) = λ̃−1 and xj+1(s∗) = λ, sj+1
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exists in (s∗, sj ). In particular, xp(sp−1) > λ̃−1 and therefore there is a unique z1 ∈ (s∗, sp−1)

such that xp(z1) = λ̃−1. Note that z1 < 1, since z1 < sp−1 < s1.
We also note that for s ∈ (s∗, sp−1), there exists a unique x−1(s), with −1 < x−1(s) < λ,

such that sλ̃−1v(x−1(s)) = λ. The function s∗λ̃−1v(z) maps �(−1, λ̃−1) into �(0, λ̃−1/v(λ)),
so that it has a unique and attractive fixed point at λ by Schwarz’s lemma. Thus s∗λ̃−1v(x) � x

for all x ∈ [−1, λ], and when s > s∗, sλ̃−1v(x) > x for all x ∈ [−1, λ]. Since this includes
[x−1(s), x0(s)], it follows that sλ̃−1v(x) > x for all x ∈ [−1, xp(s)], for all s ∈ (s∗, z1].
To see this, note that since the function sλ̃−1v is continuous and strictly increasing, the
intermediate value theorem implies that for any x(j) ∈ [xj−1(s), xj (s)], 1 � j � p, there
exists x(j−1) ∈ [xj−2(s), xj−1(s)] such that sλ̃−1v(x(j−1)) = x(j). It follows that for any
x ∈ [−1, xp(s)], s ∈ (s∗, z1], there exists x(0) ∈ [−1, x0(s)] such that (sλ̃−1v)m(x(0)) = x,
for some integer m, 0 � m � p. Then sλ̃−1v(x(0)) > x(0) ⇒ sλ̃−1v(sλ̃−1v(x(0))) >

sλ̃−1v(x(0)) ⇒ · · · ⇒ sλ̃−1v((sλ̃−1v)m(x(0))) > (sλ̃−1v)m(x(0)), i.e. sλ̃−1v(x) > x as stated.
For 0 � j � p + 1, we denote ζj = (z1λ̃

−1v)j (λ). Then, we have

λ = ζ0 < ζ1 < · · · < ζp = λ̃−1 < ζp+1 = z1λ̃
−1v(λ̃−1).

Since v(λ̃−1) � (λλ̃)−1

z1 > λλ̃, (5.32)

and since v(λ) > v(0) = 1

ζ1 >
z1

λ̃
. (5.33)

Similarly we denote ζ̃j = (z̃1λ
−1ṽ)j (λ̃), and obtain

z̃1 > λλ̃, ζ̃1 >
z̃1

λ
. (5.34)

We have seen above that

z1λ̃
−1v(x) > x, x ∈ [−1, λ̃−1]. (5.35)

Setting x =
√

λλ̃−1 gives z1λ̃
−1 >

√
λλ̃−1/v(

√
λλ̃−1), and using (4.4),

z1λ̃
−1 >

√
λ

λ̃

(
1 −

√
λλ̃

1 +
√

λ

λ̃

) 1
r

>

√
λ

λ̃

(
1 −

√
λλ̃

1 +
√

λ

λ̃

)
= 1 − √

�

1 +
√

γ
.

Hence, in view of (5.33),

ζ1

λ
>

√
γ (1 − √

�)

(1 +
√

γ )
√

�
. (5.36)

Similarly, we have z̃1λ
−1ṽ(x) > x, for x ∈ [−1, λ−1]. Setting x =

√
λ̃λ−1 we obtain, in view

of (5.34),

ζ̃1

λ̃
>

1 − √
�

(1 +
√

γ )
√

�
. (5.37)

We now define new Herglotz functions φ, φ̃ by

φ(z) = λ̃(z1λ̃
−1v)p(λz), z ∈ �(−λ−1, ζ1λ

−1), (5.38)

φ̃(z) = λ(z̃1λ
−1ṽ)p(λ̃z), z ∈ �(−λ̃−1, ζ̃1λ̃

−1). (5.39)
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We have
φ(−λ−1) = λ̃(z1λ̃

−1v)p−1(0) � z1 > λλ̃, φ(1) = 1,

φ(ζ1λ
−1) = z1v(λ̃−1) < z1(λλ̃)−1 < ζ1λ

−1.

We also have

φ̃(−λ̃−1) � z̃1 > λλ̃, φ̃(1) = 1, φ̃(ζ̃1λ̃
−1) < ζ̃1λ̃

−1.

Therefore, the domain �(−λ−1, ζ1λ
−1) is a basin of attraction of the fixed point 1 of φ,

and the domain �(−λ̃−1, ζ̃1λ̃
−1) is a basin of attraction of the fixed point 1 of φ̃. The

following lemma implies that the domains �(−λ−1, ζ1λ
−1),�(−λ̃−1, ζ̃1λ̃

−1) contain the
domains �(−λ−1, a2(λ)−1),�(−λ̃−1, ã2(λ̃)−1), respectively.

Lemma 2. The inequality

z1λ̃
−1v(z) � (1 − cλ̃)cz + (c − z)λ

c(1 − λ̃z)
(5.40)

holds for all z ∈ [0, c], c ∈ [λ, λ̃−1).

Proof. The result follows from lemma 1 of section 4, with f = z1λ̃
−1v, and a = 0, b = c, c ∈

[λ, λ̃−1), and B = λ̃−1. This function satisfies f (0) = z1λ̃
−1 � λ by (5.32), and f (c) � c

by (5.35). �

For z = λ, and choosing c =
√

λλ̃−1, we obtain ζ1/λ � 2/(1 +
√

λλ̃). Since we also have
the lower bound (5.36),

ζ1

λ
� max

{
2

1 +
√

�
,

√
γ (1 − √

�)

(1 +
√

γ )
√

�

}
= 1

a(�)
. (5.41)

In a similar way we find that ζ̃1/λ̃ � 2/(1 +
√

λλ̃), and together with the lower bound (5.37)
we have

ζ̃1

λ̃
� max

{
2

1 +
√

�
,

1 − √
�

(1 +
√

γ )
√

�

}
= 1

ã(�)
. (5.42)

The above inequalities justify our definitions of the functions a, ã in (5.21)
and (5.22), respectively. In view of (5.24) and (5.25), we conclude that
the domains �(−λ−1, ζ1λ

−1),�(−λ̃−1, ζ̃1λ̃
−1), where φ, φ̃ are analytic and which

they map into themselves, respectively, contain the domains of analyticity
�(−λ−1, a2(λ)−1),�(−λ̃−1, ã2(λ̃)−1) of φ0, φ̃0, respectively.

5.2.2. Upper bounds for φ′(1), φ̃′(1). We now use Schwarz’s lemma to obtain upper bounds
for φ′(1) and φ̃′(1). Using inequality (5.9) with

A = 1 +
1

λ
, B = B ′ = 1

a(�)
− 1, A′ = 1 − λλ̃

we obtain

φ′(1) � (1 − λλ̃)(1 +
√

λλ̃ + 2λ)

(1 + λ)(2 − λλ̃ − (
λλ̃)

3
2
) . (5.43)

Writing X = λλ̃, we have λ =
√

X
γ

and

φ′(1) �
(1 − X)

(
1 +

√
X + 2

√
X
γ

)
(
1 +

√
X
γ

)
(2 − X − X

3
2 )

= f1(X).
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We consider f1(X), 0 � X � 1. By calculation, we find

1 − f1(X) = X
3
2 +

√
γ

(2 + 2
√

X + X)(
√

X +
√

γ )
�

√
γ

5(1 +
√

γ )
.

We therefore have the upper bound

φ′(1) � 1 −
√

γ

5(1 +
√

γ )
= f2(γ ). (5.44)

Similarly, we have

φ̃′(1) � 1 − 1

5(1 +
√

γ )
= f̃ 2(γ ). (5.45)

Let k2 = max{f2(γ ), f̃ 2(γ )}. We choose �+ such that

k
1
r

2 � �+ < 1. (5.46)

We then have φ′(1) � �r
+ and φ̃′(1) � �r

+. It is easy to see that �+ must satisfy 0.8 < �+ < 1.

5.2.3. Lower bounds for φ′(1), φ̃′(1). We now obtain lower bounds for φ′(1), φ̃′(1) as
follows. We have

φ′(1) = λλ̃

p−1∏
j=0

z1λ̃
−1v′(ζj ) = λλ̃

p−1∏
j=0

ζj+1v
′(ζj )

v(ζj )

=
p−1∏
j=0

ζjv
′(ζj )

v(ζj )
=

p−1∏
j=0

−ζjψ
′(−ζj )

rψ(−ζj )
, (5.47)

where we have used ζ0 = λλ̃ζp. The lower bound in (4.5) gives

−ζψ ′(−ζ )

ψ(−ζ )
� ζ(1 − c̃)

(1 + ζ )(1 + c̃ζ )
= g(ζ ), ζ ∈ [0, λ̃−1], (5.48)

with c̃ = ã2(λ̃), where ã2(λ̃) was defined in (5.25) and satisfies
√

� < ã(�) � ã(�+) � ã2(λ̃) < ã2(0) = 2b̃ + 1 +
√

�+

2(b̃ + 1)
< 1. (5.49)

We suppose at the moment that (5.48) holds with some number c̃ satisfying ã(�) � c̃ < 1.
For 0 < j � p, λ̃−1 = ζp � ζj � ζ1 � λ/a(�) � λ/c̃, so that ζj ∈ [λ/c̃, 1/λ̃]. It is easy
to check that on this interval, the function g attains its minimum value at one of its endpoints.
By calculation we find that

g
(λ

c̃

)
− g

(1

λ̃

)
= (λ − λ̃)(1 − c̃)(c̃ − �)

(λ + c̃)(1 + λ)(λ̃ + c̃)(1 + λ̃)
.

If λ < λ̃ (γ > 1), then g attains its minimum value at ζ = λ/c̃ and we have the lower bound

φ′(1) � λp

(
(1 − c̃)

r(1 + λ)(1 + c̃λ)

)(
(1 − c̃)

r(λ + c̃)(1 + λ)

)p−1

(5.50)

� λp

(
1 − c̃

r(1 + λ)2

)p

. (5.51)

Setting now c̃ = ã2(λ̃), and using inequalities (5.49) and λ � b, we obtain

φ′(1) � λp

(
1 − √

�+

2r(1 + b̃)(1 + b)2

)p

= λpK2(r, p, γ,�+). (5.52)
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Otherwise, if λ > λ̃ (0 < γ < 1), then g attains its minimum value at ζ = λ̃−1, and we have
the bound

φ′(1) � λλ̃p−1
(1 − √

�+

2r

)p 1

(1 + b)2(1 + b̃)3p−2
= λλ̃p−1K ′

2(r, p, γ,�+). (5.53)

Note that when λ = λ̃ (γ = 1), both (5.52) and (5.53) hold.
Similarly, one can verify that if λ < λ̃ then φ̃′(1) � λ̃λp−1K̃2(r, p, γ,�+), and if λ > λ̃

then φ̃′(1) � λ̃pK̃ ′
2(r, p, γ,�+), for some functions K̃2, K̃

′
2 satisfying 0 < K̃2 < 1, 0 <

K̃ ′
2 < 1.

Suppose that λ � λ̃. Then we have

φ′(1)φ̃′(1) � λ̃λ2p−1K2(r, p, γ,�+)K̃2(r, p, γ,�+) = (λλ̃)pγ 1−pK2K̃2 � �
2p
− γ 1−pK2K̃2,

(5.54)

since λλ̃ = � = min{�0, �̃0} � �0�̃0 � �2
−. We now choose �− such that

�− � (γ 1−pK2K̃2)
1

2(r−p) . (5.55)

Then, provided r > p, it follows that φ′(1)φ̃′(1) � �2r
− . The case λ > λ̃ is similar. We note

that the condition r > p is just a limitation of the present method, and is the result of the fact
that a2(λ) and ã2(λ̃) do not tend to 0 as λ and λ̃ respectively tend to 0. However, as we shall
see below, in the case of fixed points, our estimates can be improved.

We now define the operator B(r, p, γ,�+) by

B(�0, �̃0) = (�, �̃), (5.56)

where

� = h−1
b,λ ◦ φ ◦ hb,λ, �̃ = h−1

b̃,λ̃
◦ φ̃ ◦ hb̃,λ̃. (5.57)

Our estimates show that if �+ is chosen so as to satisfy (5.46), �− is chosen so as to satisfy
(5.55) (in the λ � λ̃ case, and a similar inequality when λ > λ̃), and r > p, then

B(r, p, γ,�+)Q2(r, γ,�+) ⊂ Q2(r, γ,�+).

The continuous operator B(r, p, γ,�+) maps the compact convex non-empty set Q2(r, γ,�+)

into itself and therefore, as in the preceding section, by the Schauder–Tikhonov theorem we
obtain a fixed point which provides a solution to our problem.

In the case of fixed points, the lower bound on � can be improved. The functions ψ, φ̃ are
then analytic in �(−λ̃−1, ã(�)−1), and the functions ψ̃, φ are analytic in �(−λ−1, a(�)−1).
Thus, the bound (5.48) now holds with c̃ replaced by ã(�), instead of ã2(λ̃). Assume that � �
��, and λ < λ̃. The case λ > λ̃ is similar. We can then set c̃ = ã(�) = (1+

√
γ )

√
�/(1−√

�)

in (5.50), and after some calculations we obtain

φ′(1) � λ

(
1 − (

√
γ + 2)

√
��

r(1 + b)

)p
(1 +

√
γ (1 +

√
γ ))1−p

(1 + b(1 +
√

γ ))
= λK3(r, p, γ,��). (5.58)

Thus, for fixed points we have

�0 = φ′(1)
1
r �

(
�

γ

) 1
2r

K
1
r

3 . (5.59)

Similarly, in the case of fixed points, we obtain

�̃0 = φ̃′(1)
1
r � (γ�)

1
2r K̃

1
r

3 , (5.60)
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for some function K̃3 = K̃3(r, p, γ,��). From (5.59) and (5.60) we see that for fixed points
we have �0�̃0 � �

1
r (K3K̃3)

1
r , and since � = min{�0, �̃0} � �0�̃0,� � (K3K̃3)

1
r−1 .

Therefore, the lower bound

� � min
{
��, (K3K̃3)

1
r−1

}
(5.61)

holds for all fixed points.
This fact suggests the use of another operator instead of B, and this will be done in the

following subsection.

5.3. The operator N

In this subsection we define an operator N on the space Q̃2(r, γ,�+), where Q̃2(r, γ,�+)

has the same properties as the space Q2(r, γ,�+) in the preceding subsection, with the only
exception that �′(1)�̃′(1) > 0 (property (q̃3)). This new operator is a ‘truncated version’ of B
(which is analytic onQ2(r, γ,�+)), and depends on an additional real parameter �1 ∈ (0, 1/2).
It is only continuous, but it maps Q̃2(r, γ,�+) into a compact set. It will be shown that any
fixed point of N is a fixed point of B.

The notation is the same as in the previous subsection unless explicitly mentioned. In
particular, r > 1 and γ > 0 are fixed real numbers, and �+ is chosen as in (5.46).

5.3.1. Definition of N. We define N(r, p, γ,�1) by its action on an arbitrary element
(�0, �̃0) of Q̃2(r, γ,�+). We denote �0 = �′

0(1)
1
r , �̃0 = �̃′

0(1)
1
r . If min{�0, �̃0} � �1,

then we set � = min{�0, �̃0} as before, and define

N(�0, �̃0) = B(�0, �̃0), min{�0, �̃0} � �1. (5.62)

If min{�0, �̃0} < �1, then we set � = �1. We define λ = λ1 =
√

�1
γ

, λ̃ = λ̃1 = √
γ�1

(note that 0 < λ1 � b, 0 < λ̃1 � b̃), and proceed as follows. We define Herglotz functions
φ0, φ̃0 by

φ0 = hb,λ1 ◦ �0 ◦ h−1
b,λ1

, φ̃0 = hb̃,λ̃1
◦ �̃0 ◦ h−1

b̃,λ̃1
. (5.63)

The functions φ0, φ̃0 are analytic in the domains �(−λ−1
1 , a2(λ1)

−1),�(−λ̃−1
1 , ã2(λ̃1)

−1)

respectively, where a2, ã2 were defined in (5.24), (5.25) respectively, and map these domains
into themselves. φ0 and φ̃0 possess the same properties as in the previous subsection, except
for

φ′
0(1) = �r

0, φ̃′
0(1) = �̃r

0.

The linearizers ψ1, ψ̃1 are the unique anti-Herglotz functions analytic in �
(−λ̃−1

1 , ã2(λ̃1)
−1

)
,

�
(−λ−1

1 , a2(λ1)
−1

)
respectively, such that

ψ1(z) = 1

�̃r
0

ψ1(φ̃0(z)), z ∈ �(−λ̃−1
1 , ã2(λ̃1)

−1), ψ1(0) = 1, ψ1(1) = 0, (5.64)

ψ̃1(z) = 1

�r
0

ψ̃1(φ0(z)), z ∈ �(−λ−1
1 , a2(λ1)

−1), ψ̃1(0) = 1, ψ̃1(1) = 0. (5.65)

They satisfy

ψ1
(−λ̃−1

1

) = 1

�̃r
0

ψ1
(
φ̃0

(−λ̃−1
1

))
� 1

�̃r
0

,

ψ̃1
(−λ−1

1

) = 1

�r
0

ψ̃1
(
φ0

(−λ−1
1

))
� 1

�r
0

.
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In the preceding subsection the bounds ψ(−λ̃−1) � �−r , ψ̃(−λ−1) � �−r were important.
To restore analogous bounds in the present situation, we define new functions ψ, ψ̃ by

ψ = θ ◦ ψ1, ψ̃ = θ̃ ◦ ψ̃1, (5.66)

where θ, θ̃ are Herglotz functions given by

θ(z) =



z, �1 � �̃0,

θ1(z) = z(1 − �̃r
0)

z(�r
1 − �̃r

0) + 1 − �r
1

, �1 > �̃0,
(5.67)

θ̃ (z) =



z, �1 � �0,

θ̃1(z) = z(1 − �r
0)

z(�r
1 − �r

0) + 1 − �r
1

, �1 > �0.
(5.68)

These functions fix 0 and 1, θ1
(
�̃−r

0

) = �−r
1 , θ̃1

(
�−r

0

) = �−r
1 , and they have poles at negative

values. Let κ denote the pole of θ1 (and θ ). Then ψ ∈ AH
(−λ̃−1

1 , ã−1
3

)
, where ã−1

3 = ψ−1
1 (κ)

if κ ∈ ψ1((1, ã2(λ̃1)
−1) and ã−1

3 = ã2(λ̃1)
−1 otherwise. For z > 1, ψ1(z) < 0 and from

inequalities (4.4) we have

ψ1(z) � ψ2(z) = 1 − z

1 − ã2(λ̃1)z
.

If y = ψ−1
1 (κ) < ã2(λ̃1)

−1 then, since ψ2 is decreasing, we have

κ = ψ1(y) � ψ2(y), ψ−1
2 (κ) � y.

Thus ψ is analytic in �
(−λ̃−1

1 , �̃−1
)
, where �̃−1 = ψ−1

2 (κ) = ψ2(κ). Using κ = −(
1 − �r

1

)/(
�r

1 − �̃r
0

)
this gives

�̃ = �r
1 − �̃r

0 +
(
1 − �r

1

)
ã2(λ̃1)

1 − �̃r
0

,

ã(�1) � ã2(λ̃1) � �̃ < ã4(λ̃1) = �r
1 +

(
1 − �r

1

)
ã2(λ̃1).

(5.69)

Similarly, ψ̃ ∈ AH(−λ−1
1 , �−1), where

� = �r
1 − �r

0 +
(
1 − �r

1

)
a2(λ1)

1 − �r
0

,

a(�1) � a2(λ1) � � < a4(λ1) = �r
1 +

(
1 − �r

1

)
a2(λ1). (5.70)

The functions ψ, ψ̃ have been defined so as to satisfy ψ
(−λ̃−1

1

)
� �−r

1 , ψ̃(−λ−1
1 ) � �−r

1 .
We now proceed to define v, ṽ, z1, z̃1, φ, φ̃, etc, exactly as in the preceding subsection and
obtain the same estimates with the only exception the lower bounds for φ′(1) and φ̃′(1).

Suppose λ1 < λ̃1. The case λ1 > λ̃1 is similar. We must set c̃ = ã4(λ̃1) in (5.50), and
since λ = λ1, λ̃ = λ̃1 we find

φ′(1) � λ
p

1 l(λ1, λ̃1) = λ
p

1

(
1 − ã4(λ̃1)

r(1 + λ1)(1 + ã4(λ̃1)λ1)

)(
1 − ã4(λ̃1)

r(λ1 + ã4(λ̃1))(1 + λ1)

)p−1

. (5.71)

Similarly we obtain the bound

φ̃′(1) � λ̃1λ
p−1
1 l̃(λ1, λ̃1) = λ̃1λ

p−1
1

(
1 − a4(λ1)

r(1 + λ̃1)(1 + a4(λ1)λ̃1)

)(
1 − a4(λ1)

r(1 + λ1)(λ1 + a4(λ1))

)p−1

.

(5.72)
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Writing λ1 =
√

�1
γ

, λ̃1 = √
γ�1 we have from (5.71) and (5.72)

φ′(1)φ̃′(1) � L(�1, γ ) = �
p

1 γ 1−p l(�1, γ ) l̃(�1, γ ). (5.73)

Recall that φ, φ̃ are analytic in �(−λ−1, a(�)−1),�(−λ̃−1, ã(�)−1) respectively and map
these domains into themselves, with a, ã given by (5.21), (5.22), respectively. We note that
the bounds (5.71), (5.72) also hold in the cases when � = min{�0, �̃0} � �1, and when
θ1(z) = z, θ̃1(z) = z, since ã2(λ̃) � ã2(λ̃1) < ã4(λ̃1), and a2(λ) � a2(λ1) < a4(λ1).

Finally we define

N(�0, �̃0) = (
h−1

b,λ1
◦ φ ◦ hb,λ1 , h−1

b̃,λ̃1
◦ φ̃ ◦ hb̃,λ̃1

)
. (5.74)

The operator N(r, p, γ,�1) maps the domain Q̃2(r, γ,�+) into Q̃2(r, γ,�+) ∩ {(�, �̃) :
�′(1)�̃′(1) � L(�1, γ )} which is convex and compact and therefore it has fixed points there.

5.3.2. Fixed points of N. We now have to show that if �1 has been chosen sufficiently small,
any fixed point of N is actually a fixed point of B. We assume, from now on, that �1 � ��. Let
(�0, �̃0) be a fixed point of N. If min{�0, �̃0} � �1, there is nothing to prove. Otherwise,
we have � = �1, φ0 = φ and φ̃0 = φ̃, so that φ̃0, ψ1 are now analytic in �(−λ̃−1

1 , ã(�1)
−1),

and φ0, ψ̃1 are now analytic in �(−λ−1
1 , a(�1)

−1). Thus, the function ψ is now analytic in
�(−λ̃−1

1 , ã5(�1)
−1), where

ã(�1) < ã5(�1) = �r
1 − �̃r

0 +
(
1 − �r

1

)
ã(�1)

1 − �̃r
0

< �r
1 +

(
1 − �r

1

)
ã(�1). (5.75)

Recalling that �1 � ��, we have

ã5(�1) � �r
1 +

(
1 − �r

1

) (1 +
√

γ )
√

�1

1 − √
�1

�
(2 +

√
γ )

√
�1

1 − √
�1

= (2 +
√

γ )
√

γ λ1

1 − √
γ λ1

. (5.76)

Suppose that λ1 < λ̃1. The case λ1 > λ̃1 is similar. Using (5.76) in the lower bound obtained
by setting λ = λ1 and c̃ = ã5(�1) in (5.50) we find

φ′(1) � λ1

(
1 − 3

√
γ λ1 − γ λ1

r(1 + λ1)
(
1 − √

γ λ1 + (2 +
√

γ )
√

γ λ2
1

))

×
(

1 − 3
√

γ λ1 − γ λ1

r(1 + λ1)(1 + 2
√

γ + γ − √
γ λ1)

)p−1

.

Writing λ1 in terms of �1, and using �1 � ��, we obtain

φ′(1) � λ1

(√
γ (1 − (3 +

√
γ )

√
��)

r(
√

γ +
√

��)

)p √
γ

(
√

γ + (2 +
√

γ )��)(1 +
√

γ )2(p−1)

= λ1K4(r, p, γ,��). (5.77)

Also, ψ̃ is analytic in �(−λ−1
1 , a5(�1)

−1), where

a(�1) < a5(�1) = �r
1 − �r

0 +
(
1 − �r

1

)
a(�1)

1 − �r
0

< �r
1 +

(
1 − �r

1

)
a(�1) �

(1 + 2
√

γ )
√

�1√
γ (1 − √

�1)
,

(5.78)

and one can verify the bound, in the case λ1 < λ̃1,

φ̃′(1) � λ̃1K̃4(r, p, γ,��). (5.79)

Therefore, from (5.77) and (5.79) we have

φ′(1)φ̃′(1) � λ1λ̃1K4(r, p, γ,��)K̃4(r, p, γ,��) = �1K4K̃4. (5.80)
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The fact that (�0, �̃0) is a fixed point implies that �′
0(1)

1
r = �0 = φ′(1)

1
r , and �̃′

0(1)
1
r =

�̃0 = φ̃′(1)
1
r . Since min{�0, �̃0} < �1, we have �1 > �0 or �1 > �̃0 (or both), so that

�1 > �0�̃0 as �0 < 1, �̃0 < 1. Hence �1 > φ′(1)
1
r φ̃′(1)

1
r . Using this in (5.80) we find

φ′(1)φ̃′(1) � (K4K̃4)
r

r−1 . (5.81)

If we assume that �1 has been chosen so that �1 < (K4K̃4)
1

r−1 , inequality (5.81) contradicts
our hypothesis that min

{
�′

0(1)
1
r , �̃′

0(1)
1
r

}
< �1, i.e. �′

0(1)�̃′
0(1) < �r

1. Therefore (�0, �̃0)

is a fixed point of B.

6. Conclusion

In this paper we have investigated a class of functional equations closely related to the
period-two renormalization equations for non-commuting critical circle-map pairs. Using the
Herglotz function technique of H Epstein, we have obtained the existence of analytic solutions
of these equations. However, in order for the theory to correspond to that of circle-map pairs,
an additional condition is required which we have yet to establish with this theory. The obstacle
is one of the techniques rather than fundamental, and we are confident that further work will
establish the precise theory required for the application to non-commuting circle-map pairs.
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